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OPTIMAL ESTIMATION EQUATIONS FOR UNY~NOWN UNDLIMITEI) SICNALS*

C. H. Hoetetter .1. S. Medit ch
Electrical Engineering Department School of Engineering
California State University University of California
Long Beach , California 90840 Irvine, California 92717

Abstract Section 5, and conclusions are given in Section 6.

2. Motivation: Observing the State ofThe problem of approximating a bandlimited Systems with Unknown Inputsbut otherwise arbitrary signal by a free solution
to a linear , time—invar 1g.~t , differential equa— Observer Design
tion is aolved. Op t imal solutions for the aqua— When the state of a plant is not available totion parameters are derived for equations of any a control system for feedback , it say be estimateddynamic order. Applications are discussed and by a dynamic observer (1—3] or state estimatorexamples in stats reconstruction and inverse (4) Providing tha t the plant is completely ob—filtering in the presence of unknown disturbances ..rvgble an observer which monitors the plant in—are given. 

fi~~~ and outputs may be constructed to generate
1. Introduction signals which converge arbitrarily rapidly to the

system state, within the practical limitations of
In practice, one often has only partial in— measurement noise and parameter errors.formation regarding the character of certain sig-

nals tha t are present in or act upon a system , When an observer estimate of the plant state
examples being load torque 4j~turhn.~ces j~. ~~~~~~ is used for feedb~ch in ;lacc ef thc ztatc its.Lf ,
sachinery and electronic noise in certain semi— the eigenvalues of the composite system are those
conductor devices. For either signal processing of the observer (which nay be chosen by the de—
or feedback control , it is importan t to be able signer), together with those of the plant which
to reconstruct such signals from output measure— would result if the state itself were fed back in
sents alone. The question of this reconstruction placS of the observed state.
is solved here for the class of such signals which In special cases , it is possible to observeare bsndlimited , but otherwise unknown . The ap— the Stste of a system without having access to one

limited signal , in the sense of integral—square the~~ cases , it is necessary to have all plant in—
proach involves optimal approximation of the band— or sore of the system inputs (5—8]. ~~Cept in

bandpass error , as the homogeneous solution of a puts available to the observer , and this require—linear , t ime—invariant, ordinary diffetent ial sent is a severe restriction on the usefulness ofequation with unknown initial conditions. The observers in many situations.optimization determines the coefficients of the
differential equation thus specifying the model. When all unknown inputs may be effectively

characterized probabilistically, optimal stochas—
The organization of the paper is as follows. tic filtering (9) is clearly indicated. In prac—

In Section 2 further motivation is giveir for this tice, however, there exist many situations, forwork by showing how the theoretical problem arises example , structural systems with wind gust dis—from considerations in the application of observ— turbances and chemical processes with reactantits and observer-controllers in feedback control. impurities, in which the system inputs are unknown
The signal modeling problem is formulated in (or poorly known) even in a statistical sense.

Section 3, where it is cast as an equivalent IIe~, Observers Which Approximate Unknown Plant Inputsfiltering problem . In Section 4, a perf ormance
criterion and constraints are chosen, and the opti— A general metho d of accoemodating unknown
sal solutions are found in closed form, plant inputs in observers is to represent such

signals as solutions of constant—coefficient,Two applica tion examples are presented in ordinary, linear , differential equations . The
plant equations are augmented to represent the un—eqesearc h supported in part by a grant from the known inputs , and the resulting observer generate.California State University, Long Beach Foundation estimates of these inputs as well as the plantand is part by the U.S. Air Force Office of stat ..Scientific ftesearch und.r Grant No. AFOSE 71—2116g.

Thie approach began with the work of Johnson
(t o-il], Pearson (12] and Davison (13— 14], with-
out explicit connection to observer th.osy.
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Sryson and I.uenherger took an observer viewpoint Were the filter transmittance zero over this
of a s imI lar  problem (15] and Young and Willen~ band , 1(t) would satisf y (2) exactly,  with e(t)”O.
eon~ tdered a more general problem class (16) .
Bostette r and Keditch related Davison ’s work to 

The thrust of classical filter theory over

the observer approach (ii) and investi gated th e 
the years has been pr imari ly  toward practical,
realizable designs such as al1—p~le filters andstructure and propert ies  of these observers in others in which the number of pole. exceeds the

quite some detail (18—19). number of zeros in the filter transfer function
Although there are situations where an m ac— (21— 22). IJell known techniques , however nay be

cessible input signal is known to sat isfy a brought to bear upon the less conventiona l problem
specific differential equation , for example power faced here.
line “hua”, in most case, the differential equn— 4. Solutions for Opti mal Filters
tion f or an u nknown signal will be only an approxi-
mating equation, just as are the equations which Performance Criterion and Constra in ts
model the plant. The question thus arises as to
a “best” approx imating equation for certain 

Let the signal 1(t) be bsndlimited at radian

classes of input signals. 
frequency s • Then a particularly useful aOd

0

bandstop filter over the frequency range between3. Problem Formulation 
common measure of the performance of T(e) as a

Representing Signals as Solutions to Different ial  W — 0 and w — W is
Equations 

0

- J — f
Let an unknown signal 1(t) be represented as o

a solution f ’( t )  to the scalar differential Constraints are necessary, though, to yteld use—
equation ful solutions, and the particular restrictions

a ( d ”f ’/d t m) + a~_1(d”~~f’/dt~~~ + a — 0 and a — I will be used. The transfer
0 1%

+ a1
(df’/dt) + a l —  0 (1) function will thus be restricted to be of the form

Ideally, the unknown signal f( t )  would satisf y I(s) — 
n n—ls + a i s + +

this differential equation exactly. But if a n— ‘“

solution of the equation only approximates 1(t),
then 

Requiring T(s) to have a zero at a • 0 re—

a~ (d~f/dt ~) + a (d
n_l

f,d~
m_l
) + 

flects the desirability of zero tranemittance of
the f i l ter  for any constsnt component of 1(t) .

+ a1(df/dt)  + a0f — e(t), (2) This is to say that the approximating function to
f ( t ) , satisfying (1), includes a possible constant

where e (t) is an error Signal , indicative of tho component. This requirement is particularly
quality of the approxima t ion. important in applications where signal offsets are
An Equivalent Filter likely and steady—state performance is of concern.

The relation (2) may be viewed as a filtering Fixing the coefficient of the highest power
problem where 1(t) is the filter input, e(t) is the of s in T(s) is a simple mesas of avoiding the

filter output and the filter transfer function is trivial solution

a •a  • ... s1 a — OnI(s) — a s + 1 + , , ,  + a1. + a .  n m—l o
n n—I

and is justified by the following observation:
One may then view the problem of determining pars— Since any equation (1) may be chosen in such a
meters of an approx imating differential  equation
as an equivalent problem of determining parameters 

way as to include all solutions of a lower order
equation, the equation of higher order gives at

of a filter, T(s). least as good an approximation to f(t) as does the
This equivalent filter has all zeros and is equation of lover order.

Low Order Result.thus not realizable as a finite—dimensional dynamic
linea r system [20). But the equivalent filter is
just an analytic convenience, not the end result. The optimum first order filter is constrained

to have transfer function
Filter Characteristics for Bandli’sited Signals T1(s) — a,

If the unknown signal 1(t) is bandlimited . as which corresponds to the approximating differen—
most physical signals are (20], the filter F(s) tial equation
should be chosen to have stopband characteristics
over the range of frequencies present in f(t).* (df’/dt) — 0,

end an arbitra ry constant approximating function .
aIm linear systems of the integrating type (de-
scribed by state equations without direct input—to— ~. The optimum second order filter ia found to
outpu t coupling) the inputs, even if they are not have transfer function
bandlimi ted , say be considered to be band limited
for all practical purposes as far as their effects 

T2(s) — .2,

upon the system state are concerned , corresponding to

(d2f ’ Fdt 2) • 0,

620

- - _________ 

. - -  - 
______________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~— ‘---- -- -



____ 
_____  

~
-

~
-
~~: ~~~~~~~~~ ~~~~~ 

—--- — — 
-- -~~~~~~~~~

- - __
~J~~~:::~~- ~~~~ ~~~~~~~

end an approximating function consisting of a 
~JT(Ju)l

2/aa — ~~g
i
(

~ j
fl

_g 03~ 2+. 03n 4  
—congtaflt plus a ramp.

The opt m u m  third order and fourth order ao tha t
03filters arc 

~J,aa • 21 ° (w’~
1 

— a~_2w
”12 

+1 0
- 1

3
(5) — a3 + ~~~~~~~~~ 

n+i—4a w - . .n-4which haa imaginary axis root, within the atopband
range , and Equating to zero , there results the system

T4
(s) — a~ + (54~3 2/7)52 of linear algebraic equations

nfl-i 
03
n+i-3

which is similar but with a repeated zero at a — 0. o 
_________,a • — — 5 +n+ i— ~~ n—~ n + j — 3  n—4The repeated imaginary axis roots of T2 (a) 

n+i+l
03and I (a) indicate instability of the approxinat— 0

lag dh fe rential equation , but such instability of “ — n + i + 1
the observ ed “pla n t” is of no particular concern or
in observer design since observer elgenvalues say 

1 —2 a — 
1 (w ~a ..~ ) +be placed arbi t rar i ly  [2—3 , 18—19) .

n + i — l  o n-2~ n + i — 3  a a
Properties of the Optima l Transfer Functions

1
It is particularly convenient at this point •“ — n + I + 1’

to consider I(s) in the factored form i — Cm — 2), ( n — 4),
T(s) — s(s4a)(2+8 ~~1 m48

2~~’y2~~ .., which may be solved to obtain ~~ —2 
%—2~’

(6’ ~ _4 )Iwhere the real root term (84o) is present if T(a) o it
is of even order and is deleted if I(s) I o f  odd The nex t few optimal tran sfer functions thatorder. Then

fesul t are as follows:
2 2  2 2IT(Jw)1

2 
— w2 ( 24a2 ) ( 4+8 w —2y1u 

~~~~~ ~ 15(s) •~ + (1.ll)w 2s3 + (O.238)03~~2 2(w4+8 2w2-2y u +y2 
).

Ti(s) — •
6 + (1 27)03 2.4 + (O.353)w~4 2

5
The pertormar.~e neasure is

— ~0°I~~~ l2d~ 17 (s) - + (l.62)w 
2~5 + (O.134)w

~~.~ +
and one obtains

aaJ/aa - ,~ou2 (2G) (w4~~~ 2w2_~~, w 2~~~ 2 ) ... 
. (O.08l6)u0

6 — - . - .

T8(s) — + (1.80)03
2
.6 + (O.969)w

~
’.
~ 
+

Setting this derivative to zero, one has a — 0 in 6 2view of the nonegativity of the remaining factors (0.147)6’ a
in the integrand. Further, In the next section, It is shown how the

above results can be used in two signal process—— /8o2 (032 +a2x281w
2 

ing application..

(~4 2 2  2 2
+ 82 03 — 

~~2” + ~2 )...dia, 5. Examples
from which it is evident that B.~ — 0, and , similar— O rvin~ a System State
ly, that 82 • 83 ... — 0. Consider the system

~i’ 
[_ 2 11 [~1 [11Isking the remaining partial derivatives such

as LI/By 1 gives the furthe r conditio ns for .ini—

~ 
L+~ 11(r)[~2j - k oj  L~ 2j Lhi•Lzation of 3, but in a di f f icul t  form . Having

derived the important result tha t , depending upon
the transfer func t ion order , the optimal T(s) is
•tthsr an even or an odd polynomial , we now return X

1]to the serial polynomial notation. y — (i 1)
• General Solution [22]

where f Ct) is an unknown inpu t signal. The tram.—For an even or odd polynomial . Icr functions relating 1(t) to the state signals
I(s) — 5” + aa..2e~~

2 + a~~4s + . ..,  21(t) and x2(t) are
and

JT(jw)1
2 •(e? — m—2 

~ it~2 + a
n-~

s?4 — 
T~(.) • (a + 1),(s 2 + 2. + 3)

T2(s) — Cs — 1)/(s 2 
+ 2. + 3) -

Interchang ing the order of integrs tioe and differ— respec t ively.entiat lon in taking 3J/3m~. on. has
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f frequency reopuna. which approaches —20 decibels I X 1 — I~ ~] I z 1• Each of these transfer functions exhibits

per decade above about 2 radians per second. If I ~‘J L o oJ L t’Jthe amplitude of the spectrum of f(t) is bounded
at high frequencies, the effects upon the state y — 2(t).
of the high frequencies , in comparison with the 

~~ ii~entity observer of the augmented system,lower frequencies in 1(t) , will be small, with eigenvalues chosen to be —3 and —4 is
For example, if f (t )  is a square wave of r r

radian frequency 1, the third harmonic amplitude I — ~ 
1 I I ~

i] 

161
in x

~ 
and x2 will be approxImately 0.15 as large — i I I + Iy(t),

as the fundamental. The relative amplitude of I ½j L12 0 j  L~2 
12]

• the fifth harmonic will be less than 0.05. L
and the signal z,(t) observes f’(t), and thus

Taking w
~ 

— 10 to be the effective band him— provides an estiLtte of f ( t ) .
it of the input signal , 1(t) is approximated by The observer transfer function isf ’ ( t) ,  where f ’  is chosen to satisf y the optimal
third order approximation 

• 12(s + 1)H(s) — 2(d3f’/dt3) + (3w 2/3)(df’/dt) — 0, 5 + 75 + 12

the augmented system equation, become which is identical to that obtained by the con-
ventional means in which It(s) is chosen to be the

1 —2 1 1 0 ol inverse of C(s), with additional poles added soI —~~ 0 1 0 0 I that it has more poles than zeros (23]. It is
particularly interesting that the methods de—

• a’ — 0 0 0 1 0 i’ scribed here show how conventional inverse filter

1 • 

techniques may be logically and easily extended to

0 0 —60 oJ sultivariable systems.

p 0 0 0 0 approximations of arbitrarily high order in

• y — ( 1 1. 0 0 0 ]x’. In this connection , it is worth emphasizing
• that the optimal approx imating functions are a

An observer of this system will provide estimates constant for the first order and a constant plus• of the system state and, if desired , of 1(t) . ramp for the second ort4 r , f,r ,wtlnn. which ar e
~~ampl.s of analog computer simulations of such quite familiar in classical circuit and control
problena sppear in (19]. theory. The results ‘or the third and higher
Observing a Filtered Signal orders , however, depend upon w~, the band limit

of the signal 1(t).
In many practical applications, for example

in biomedical instrumentation and economic model— 6. Conclusion
isg . it is desired to estimate inaccessible
signals which say be considered to be unknown It has been shown how inaccessible signals
inputs to filters wherein only the output signals which are taken to be bandlimited , but othi~ ds.
are available, arbitrary , can be suitably modeled for inclusion

in a variety of signal processing application..
One approach is to consider the unknown and The model amounts to approximate representa t ion

inaccessible signals to be generated , approxi— of the signal as a solution of a differential
mately, by free systems of the type (1). The equation with the coefficients of the latter de—
available outpu t signals are then considered to termined to minimize the integral—square passband
be produced by the larger system consisting of error of the approxima tion. Properties of these
the actual system augmented by the approximating approximations were investigated and the coeff i—
equations. Mt observer of the augmented system cients of the representation. up to order 8 were
will then generate estimate. of the inaccessible • 

determined . Applications of the results were
stinals (is). illustrated in two examples , the first yielding

Cons ider an inaccessible signal 1(t) which reconstruction of the state of a second—order
is processed by a simple low-pass filter to pro— dynamic system which i. subject to a bandlimited

• dune lbs available signal y(t) where . disturbance signal , the second the recovery of
such a signal from output measure ments alone.

I(s) • Cl/Cs + l)]F(s) — C(s)F(s), In the latter case , an intimate connection with
• ‘ inverses was established .

This filter is repres ented by the system
Additional research has indicated that the

• i — —x + f( t)  
~ approach given here can be extended to certain

7 — 2. probl ems in digital signa l pro cessing [24].

Approximating f( t)  by f’(e), where I’ satis—
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